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ADWWI. Simiiarity solutions are derived For the noniinear diiiusian equaiian e, = V . j c 0 4  
in one dimension and with cylindrical symmetry. Same applications are indicated. 

1. Introduction 

In this paper we give further exact solutions of the type discussed in King [l]. We 
consider the radially symmetric nonlinear diffusion equation 

and seek similarity solutions of the form 

) f ( r /  t'"N+Z' c =  t - N / [ N + 2 )  

to obtain 

where 7 = r / t" (Nt2 ' ,  and a is an arbitrary constant of integration. When (I = 0, the 
solution to (1.3) is easily determined in closed form. Here we shall obtain the general 
solution to (1.3) for a # 0 when N = 1 and when N = 2. It is convenient to first introduce 

2. Exact solutions 

2.1. N = l  

Equation (1.4) is then the Riccati equation 
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Writing 

we obtain the linear equation 

with general solution 

q = a Ai((6a2)-’/’g)+ b Bi((6a2)-’/’g) 

where a and b are arbitrary constants, and Ai and Bi are Airy functions. We therefore 
have 

sin y Ai’((6a2)-’’’(f+atl2))+cos y 

sin y Ai((6a2)-”3(f+ar,2))+cos y 
r, = -(36a)’13 

where sin y = a / ( a 2 +  b2)Ii2. 
Later we shall also need the solution of the form 

c = (-f)-’/’f( r / ( - f ) ” 3 ) .  

We then have 
(2.3) 

d f  
dr, 

fr, f = f-+a 

where r, = r / ( - f ) ” ’  and the solution (which can be obtained from (2.2) by replacing 
f by -f) is 

sin y Ai’((6a2)-’/’(ar,’-f))+cos y Bi’((6u2)-’l3 ’ 
sin y Ai( (6~~) - ’” (dr ,~ - f ) )+cos  y Bi((6a ) 

2 - I / )  (“ I 2 -f))). (2.4) 
( 8 7  -f)) 

r, = -(36a)’/’ 

2.2. N = 2 

Equation (1.4) is then the Bernoulli equation 

The solution, which is a special case of one derived in [2] (though its application to 
the cylindrically symmetric problem was not noted there) is obtained by writing 
r, = [ - ’ I 2  to give 

so that 

(= eg’/“(Q=erfc(g/&)+p) 

where p is an arbitrary constant. 
Hence we obtain 

r, = e ~ p ( - ( f + ; r , ~ ) ~ / 2 a ) { B m  erfc((f+Qq2)/&) +p)-‘12, (2.5) 
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The solution (2.5) satisfies 

as q + O  2 , / 2  f- (a I n ( l l P q  )) 
and this singularity makes the solution harder to interpret than that of section 2.1 (it 
does, however, correspond to a finite flux across r = 0). In the next section we shall 
briefly discuss possible applications of (2.2) and (2.4). 

3. Applications 

Here we consider two simple problems whose solutions can be determined from the 
results of section 2.1. 

Replacing r by x, we are considering 

(3.1) 

We first discuss the initial-boundary value problem for (3.1) subject to 

c = o  at x = O  
c + o  at x++m 

c = D / x  a t f = O  

for some constant D > 0. The integral result 

jam ( x c - 0 )  dx = 0 

c = f 4 1 3 f  (XI 1'1') 

then holds for all t and the solution takes the form 

(3.2) 
wheref is given by (2.2) with q = x / f " ' ,  a = -fD and y = ~ 1 3 ;  the value of y follows 
from f(0) = 0 and Bi'(O)/Ai'(O) = -A. 

This solution will also describe the large-time behaviour for more general initial 
conditions such that c-D/x as x++m. It might at first appear that the similarity 
form (3.2) is also appropriate for describing the large-time behaviour for (3.1) subject 
to 

ac/ax = o at x=O 

c + o  as x + +m 

c = co(x) at t = O  
(3.3) 

where c,- D / x  as x + +m. However, the condition on x = 0 cannot be satisfied unless 
(I =0, which requires D=O. It follows from the results of [3] that the large-time 
behaviour for (3.1) subject to (3.3) in fact takes the form 

- f - l J l  l n 2 / l  1 ~ ( x / P  iniJ3 1 )  

rather than (3.2). 

[4] and [SI). We solve (3.1) for f < O  subject to 
As our second application, we apply (2.4) to a peaking problem (see, for example, 

c =  D(-t)-'I1 at x = O  

c + o  as x +  fm 

c + o  at t -  -m. 
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The solution takes the form (2.3) and in (2.4) we require f + 0 as 7 ++a which may 
be shown to give y = a/2 ,  so that 

7 = -(36a)”’ Ai’((6a2)”’’(&72- f))/Ai((6a2)-”’(~?2- f ) )  (3.4) 
which implies that 

f - 3 4 7  

as 7 + +m. 
We determine a from the condition that f(0) = D which requires 

Ai’(-(6a2)-‘l3D) = 0. 

We need the first zero of Ai’ which gives 

(6a2)-’”D = 1.018 79,. . 
(see 161). 

4. Discussion 

In [ l ]  we derived general solutions to a number of similarity ordinary differential 
equations for power law diffusivities, and for N = 1, 2 and 3 these all correspond to 
negative powers (the ‘fast’ diffusion case). Here we have obtained two general solutions 
for the particular ‘slow’ diffusion case (1.1). It should be noted that some of the 
discussion in sections 3.1 and 6 of [ 11 concerning the behaviour of the ‘dipole’ solutions 
implicitly assumed that ( n N + 2 ) / ( n +  1 ) > 0  (in the notation of that paper); when this 
condition is violated the discussion is incorrect in places. 

Some exact solutions for ‘fast’ diffusion with peaking can fairly easily be found; 
for example, if we consider 

ac -=+E) a 
at  ax 

C =  D ( - I ) - ’ / ~  at x=O 

c + O  with c-‘“(ac/ax)+O as x + + m  

c+O at t + -m 

for I < 0, then the solution is given for m > 0 by the travelling wave 
c = D(m1/2Dm/2x - t ) - ’ / ” ’ ,  

Exact solutions for the ‘slow’ case are harder to find, but one is given by (3.4) 
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